Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Environ Pollut ; 349: 123905, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580062

RESUMO

With the acceleration of air cleaning activities in China, air pollution has entered a new stage characterized by seasonal interplay and predominance of fine particulate matter (PM2.5) and ozone (O3) pollutants. However, the differing peak seasons of these two pollution preclude the use of a unified indicator for air pollution complex. Given that peroxyacetyl nitrate (PAN) originates from secondary formation and persists under low-temperature conditions for extended periods, it is vital to determine whether its concentration can be used as an indicator to represent air pollution, not only in summer but also in winter. Here, PAN observational data from 2018 to 2022 for Beijing were analyzed. The results showed that during photochemical pollution events in summer, secondary formation of PAN was intense and highly correlated with O3 (R = 0.8), while during PM2.5 pollution events in winter, when the lifetime of PAN is extended due to the low temperature, the PAN concentration was highly consistent with the PM2.5 concentration (R = 0.9). As a result, the PAN concentration essentially exhibited consistency with both the seasonal trends in the exceedance of air pollution (R = 0.6) and the air quality index (R = 0.8). When the daily average concentration exceeds 0.5 and 0.9 ppb, the PAN concentration can be used as a complementary indicator of the occurrence of primary and secondary standard pollution, respectively. This study demonstrated the unique role of PAN as an indicator of air pollution complex, highlighting the comprehensive ability for air quality characterization and reducing the burden of atmospheric environment management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Ozônio , Material Particulado , Ácido Peracético , Ácido Peracético/análogos & derivados , Estações do Ano , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Material Particulado/análise , Ozônio/análise , Ácido Peracético/análise , Pequim , China
2.
Sci Total Environ ; 926: 171989, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547971

RESUMO

To understand the characteristics of atmospheric pollution above the urban canopy in warm seasons, the characteristics of sub-micron aerosol (PM1) was studied based on high-altitude observations at the Beijing 325 m meteorological tower. The PM1 at 260 m was 34, 29 and 21 µg m-3 in May 2015, June 2015, and June 2017, respectively, indicating a reduction in PM1 pollution above the urban canopy. Meanwhile, an overall decrease was also observed in the concentrations of all PM1 chemical species (excluding Chl and BC) and organic aerosol (OA) factors. Previous instances of heavy haze in Beijing often coincided with high humidity and stagnant weather conditions. However, the heightened pollution episodes in June 2017 were accompanied by high wind speeds and low relative humidity. Compared to May 2015, the contribution of secondary components to PM1 in June 2017 was more prominent, with the total proportion of SNA (sulfate, nitrate, and ammonium) and more-oxidized oxygenated OA (MO-OOA) to PM1 increased by approximately 10 %. Secondary species of NH4NO3, (NH4)2SO4, and MO-OOA, as well as black carbon, collectively contributed the vast majority of aerosol extinction coefficient (bext), with the four species contributing a total of ≥96 % to bext at 260 m. Hydrocarbon-like OA, cooking OA, and less-oxidized oxygenated OA have undergone significant reductions, so continued emphasis on controlling local sources to reduce these three aerosol species and addressing regional sources to further mitigate overall aerosol species is imperative. In lower pollution situation, the diurnal variation of PM was smoother, and its pollution sources were more regionally uniform, which might be attributed to the reduced diversity and complexity in the physical and chemical processes in air pollution.

4.
Environ Pollut ; 343: 123209, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142027

RESUMO

At the present stage, collaborative control of particulate matter and ozone pollution has become a modern challenge. The atmospheric boundary layer height (ABLH) is an important meteorological parameter for the sources and sinks of air pollutants. It is generally recognized that the reduction of boundary layer is conducive to the accumulation of pollutants. However, in recent years, some studies have shown that the relationship between ABLH and ozone is not negatively correlated. Here, we analyzed the spatial distribution characteristics of PM2.5 and ozone exceedance in China from 2015 to 2022. The relationships between particulate pollution and ozone pollution and boundary layer meteorology were discussed. The key to coordinated control is to control the PM2.5 concentration in the winter and ozone in summer. Moreover, the two have different responses to meteorological factors, especially to the ABLH. Low temperature and low ABLH are conducive to the deterioration of particulate pollution, but high temperature and high ABLH are conducive to the occurrence and development of ozone pollution. The response of ozone to ABLH is contrary to previous studies in Europe and the United States. Moreover, an abnormal positive correlation was observed for PM2.5 and ABLH in Southwest China, which was mainly due to the impact of biomass combustion in Southeast Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Estados Unidos , Material Particulado/análise , Ozônio/análise , Poluição do Ar/análise , Meteorologia , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Poeira , Estações do Ano , China
5.
Sci Total Environ ; 905: 166852, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717750

RESUMO

Peroxyacetyl nitrate (PAN) is a typical secondary photochemical product in the atmospheric environment with significant adverse effects on human health and plant growth. In this study, PAN and other pollutants, as well as meteorological conditions were observed intensively from August to September in 2022 at a typical urban sampling site in Beijing, China. The mean and maximum PAN concentrations during the observation period were 1.00 ± 0.97 ppb and 4.84 ppb, respectively. Severe photochemical pollution occurred during the observation period, with the mean PAN concentration about 3.1 times higher than that during the clean period. There was a good positive correlation between O3 and PAN, and their correlation was higher during the O3 exposure period than that during the clean period. The simulated results by box-model coupled with the Master Chemical Mechanism (MCM v3.3.1) showed that the O3-related reactions were the largest sources of OH radicals during O3 exposure period, which was conducive to the co-contamination of PAN and O3. Acetaldehyde (CH3CHO) and methylglyoxal (MGLY) were the largest OVOCs precursors of peroxyacetyl radicals (PA), with the contributions to the total PA generated by OVOCs about 67 % - 83 % and 17 % - 30 %, respectively. The reduction of emissions from liquefied petroleum gas (LPG) and solvent usage has the highest reduction effect on PAN and O3, followed by the control of gasoline vehicle exhaust emissions. This study deepens the understanding of the PAN photochemistry in urban areas with high O3 background conditions and the impact of anthropogenic activities on the photochemical pollution. Meanwhile, the findings of this study highlight the necessity of strengthening anthropogenic emissions control to effectively reduce the co-contamination of PAN and O3 in Beijing in the future.

6.
Sci Total Environ ; 903: 166182, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562614

RESUMO

Due to the nonlinear impacts of meteorology and precursors, the response of ozone (O3) trends to emission changes is very complex over different regions in megacity Beijing. Based on long-term in-situ observations at 35 air quality sites (four categories, i.e., urban, traffic, northern suburban and southern suburban sites) and satellite data, spatiotemporal variability of O3, gaseous precursors, and O3-VOCs-NOx sensitivity were explored through multiple metrics during the warm season from 2013 to 2020. Additionally, the contribution of meteorology and emissions to O3 was separated by a machine-learning-based de-weathered method. The annual averaged MDA8 O3 and O3 increased by 3.7 and 2.9 µg/m3/yr, respectively, with the highest at traffic sites and the lowest in northern suburb, and the rate of Ox (O3 + NO2) was 0.2 µg/m3/yr with the highest in southern suburb, although NO2 declined strongly and HCHO decreased slightly. However, the increment of O3 and Ox in the daytime exhibited decreasing trends to some extent. Additionally, NOx abatements weakened O3 loss through less NO titration, which drove narrowing differences in urban-suburban O3 and Ox. Due to larger decrease of NO2 in urban region and HCHO in northern suburb, the extent of VOCs-limited regime fluctuated over Beijing and northern suburb gradually shifted to transition or NOx-limited regime. Compared with the directly observed trends, the increasing rate of de-weathered O3 was lower, which was attributed to favorable meteorological conditions for O3 generation after 2017, especially in June (the most polluted month); whereas the de-weathered Ox declined except in southern suburb. Overall, clean air actions were effective in reducing the atmospheric oxidation capacity in urban and northern suburban regions, weakening local photochemical production over Beijing and suppressing O3 deterioration in northern suburb. Strengthening VOCs control and keeping NOx abatement, especially in June, will be vital to reverse O3 increase trend in Beijing.

7.
Chemosphere ; 332: 138767, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37105313

RESUMO

Exploring the vertical variations in volatile organic compounds (VOCs) in the atmosphere and quantifying the sources of VOCs at different heights can help control atmospheric photochemical pollution in summer. Here, VOCs were vertically detected at three heights (47 m, 200 m and 320 m) along a 325 m tower of the Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, in the mornings (8:00) and afternoons (15:00) from May 19 to June 18, 2021. The VOC concentrations in Beijing in summer were 16.2 ± 5.6 ppbv, 14.7 ± 2.5 ppbv and 14.9 ± 3.8 ppbv at 47 m, 200 m and 320 m, respectively, and alkanes accounted for the largest proportion at all heights (>56%). The vertical gradients of the VOC concentrations and components did not significantly change, which was consistent with the summer observations of other stations in North China in recent years, but these results significantly differed from observations from more than a decade ago. To determine the reason for this, a classification based on atmospheric stability was performed, revealing that the vertical distribution of VOCs was uniform in convective and stable conditions and decreased with increasing height in neutral condition. With the transition of atmospheric stability from neutral to convective to stable, the contributions of fuel combustion sources and solvent use sources gradually increased, while those of biogenic sources and background sources gradually decreased. With increasing height, the contributions of background sources increased, those of biogenic sources, solvent use and gasoline vehicular emissions decreased, and those of fuel combustion and industrial emissions remained basically unchanged. The above results indicated that with air pollution treatment, the potential for reducing emissions of VOCs in Beijing has decreased. Therefore, regional joint prevention and control are the main ways to control VOC pollution in Beijing.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Pequim , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , China , Solventes , Ozônio/análise
8.
J Environ Sci (China) ; 130: 37-51, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37032041

RESUMO

This study analyzes the impact of circulation types (CTs) on ozone (O3) pollution in Beijing. The easterly high-pressure (SWW) circulation occurred most frequently (30%; 276 day), followed by northwesterly high-pressure (AN) circulation (24.3%; 224 day). The SWW type had the highest O3 anomaly of +17.28 µg/m3, which was caused by excellent photochemical reactions, poor diffusion ability and regional transport. Due to the higher humidity and precipitation in the low-pressure type (C), the O3 increase (+8.02 µg/m3) was less than that in the SWW type. Good diffusion/wet deposition and weak formation ability contributed to O3 decrease in AN (-12.54 µg/m3) and northerly high-pressure (ESN) CTs (-12.26 µg/m3). The intra-area transport of O3 was significant in polluted circulations (SWW- and C-CTs). In addition, higher temperature, radiation and less rainfall also contributed to higher O3 in northern Beijing under the SWW type. For the clean CTs (AN and ESN CTs), precursor amount and intra-area transport played a dominant role in O3 distribution. Under the northeasterly low-pressure CT, better formation conditions and higher precursor amount combined with the intra-area southerly transport to cause higher O3 values in the south than in the north. The higher O3 in the northwestern area under the northeasterly high-pressure type was influenced by weaker titration loss and high O3 concentration in previous day. Annual variation in the CTs contributed up to 86.1% of the annual variation in O3. About 78%-83% of the diurnal variation in O3 resulted from local meteorological factors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/análise , Pequim , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental , China , Poluição do Ar/análise
9.
Environ Pollut ; 325: 121440, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921656

RESUMO

The interaction of aerosols and the planetary boundary layer (PBL) plays an important role in deteriorating urban air quality. Aerosols from different sources may have different effects on regulating PBL structures owing to their distinctive dominant compositions and vertical distributions. To characterize the complex feedback of aerosols on PBL over the Beijing megacity, multiple approaches, including in situ observations in the autumn and winter of 2016-2019, backward trajectory clusters, and large-eddy simulations, were adopted. The results revealed notable distinctions in aerosol properties, vertical distributions and thermal stratifications among three types of air masses from the West Siberian Plain (Type-1), Central Siberian Plateau (Type-2) and Mongolian Plateau (Type-3). Low loadings of 0.28 ± 0.26 and 0.15 ± 0.08 of aerosol optical depth (AOD) appeared in the Type-1 and Type-2, accompanied by cool and less stable stratification, with a large part (80%) of aerosols concentrated below 1500 m. For Type-3, the AOD and single scattering albedo (SSA) were as high as 0.75 ± 0.54 and 0.91 ± 0.05, demonstrating severe pollution levels of abundant scattering aerosols. Eighty percent of the aerosols were constrained within a lower height of 1150 m owing to the warmer and more stable environment. Large-eddy simulations revealed that aerosols consistently suppressed the daytime convective boundary layer regardless of their origins, with the PBL height (PBLH) decreasing from 1120 m (Type-1), 1160 m (Type-2) and 820 m (Type-3) in the ideal clean scenarios to 980 m, 1100 m and 600 m, respectively, under polluted conditions. Therefore, the promotion of absorbing aerosols below the residual layer on PBL could be greatly hindered by the suppression effects generated by both absorbing aerosols in the upper temperature inversion layer and scattering aerosols. Moreover, the results indicated the possible complexities of aerosol-PBL interactions under future emission-reduction scenarios and in other urban regions.


Assuntos
Poluentes Atmosféricos , Pequim , Poluentes Atmosféricos/análise , Retroalimentação , Monitoramento Ambiental/métodos , China , Aerossóis/análise
10.
Huan Jing Ke Xue ; 44(1): 66-74, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635796

RESUMO

Based on the sounding data of VOCs in the lower troposphere (0-1000 m) in the northern suburb of Nanjing in the autumn of 2020, the vertical profile distribution, diurnal variation, and photochemical reactivity of VOCs in this area were analyzed. The results showed that the volume fraction of VOCs decreased with the increase in height (72.1×10-9±28.1×10-9-56.4×10-9±24.8×10-9). Alkanes at all heights accounted for the largest proportion (68%-75%), followed by aromatics (10%-12%), halohydrocarbons (10%-11%), alkenes (3%-7%), and acetylene (2%). The diurnal variation of the boundary layer had a great influence on the VOCs profile. The lower boundary layer in the morning and evening caused the volume fraction of VOCs to accumulate near the ground and lower in the upper layer. The vertical distribution of VOCs was more uniform in the afternoon. In the morning, the volume fraction proportion of alkenes (alkanes) with strong (weak) photochemical reactivity decreased (increased) with the increase in height, indicating that the photochemical aging of VOCs in the upper layer was significant. In the afternoon, the vertical distribution of VOCs volume fraction and OFP in the lower troposphere were more uniform. Affected by the surrounding air masses with different sources, the volume fraction and component proportion of VOCs at each height were significantly different. The alkanes in rural air masses were vertically evenly distributed, and the proportion increased gradually with the height. The vertical negative gradient of VOCs volume fraction in the urban air mass was the largest, the volume fraction of VOCs near the ground was high, and it was rich in aromatics. The proportion of aromatics increased with the increase in VOCs volume fraction between 200-400 m height of industrial air mass. The near-surface VOCs volume fraction of the highway traffic air mass was high, and alkanes accounted for the largest proportion.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Alcenos/análise , Alcanos/análise , China , Ozônio/análise
11.
J Environ Sci (China) ; 123: 350-366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521998

RESUMO

Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO2·, NO3· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O3 and NO2, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O3 and PM2.5 was analyzed by scenario simulation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição do Ar/análise , Atmosfera/química , Aerossóis/análise , Oxirredução , Oxidantes , Poluentes Atmosféricos/análise , Material Particulado/análise , China , Monitoramento Ambiental
12.
Environ Pollut ; 316(Pt 1): 120710, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414162

RESUMO

The atmospheric chemistry of nitrous acid (HONO) has received extensive attention because of its significant contribution to hydroxyl (OH) radicals. Heterogeneous reaction of NO2 is an important HONO source, and its reaction mechanism is affected by many factors, such as concentration of gaseous NO2, surface adsorbed water, relative humidity and temperature. Although laboratory studies have confirmed the effect of temperature on heterogeneous reaction of NO2, there are few field observations reporting about it. We have conducted a field observation in the early spring 2021 when the temperature ranges widely (-0.1-24.7 °C). Concentrations of HONO and related pollutants at the urban area of Beijing are obtained. The hourly averaged HONO concentration reaches 4.87 ppb with a mean value of 1.48 ± 1.09 ppb. Combined with box model and RACM2 mechanism, we found an optimal temperature (∼10 °C) existing for heterogeneous reaction of NO2 during this measurement. When considering the promotion effect of optimal temperature, the contribution of heterogeneous reaction of NO2 to HONO can increase by 10%. This result will provide essential information for developing an accurate model of HONO chemistry in the atmosphere especially for certain periods or regions with temperature changing largely. Moreover, heterogeneous reaction of NO2 is the vital source of HONO, contributing 63-76% to simulated HONO during this measurement. Note that HONO photolysis is the most important formation pathway of OH radicals, and ambient HONO concentration is the obbligato constraint for evaluating atmospheric oxidation by model simulations.


Assuntos
Ácido Nitroso , Ozônio , Radical Hidroxila , Dióxido de Nitrogênio , Pequim
13.
Sci Total Environ ; 858(Pt 2): 159830, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343804

RESUMO

Regional PM2.5 transport is a crucial factor affecting air quality, and the meteorological mechanism in the atmospheric boundary layer (ABL) has not been fully understood over the receptor region in the regional transport of air pollutants. Based on the intensive vertical measurements of air pollutants and meteorology in the ABL during a transport-induced heavy air pollution event in Xiangyang, an urban site over a receptor region in central China, we investigated the meteorological mechanism in vertical PM2.5 changes in the ABL for heavy air pollution over the receptor region. Driven by northerly winds, regional PM2.5 transport was built from upstream northern China to downstream central China, where the observed ABL structures were unstable throughout the air pollution event. We assessed the ABL structures with meteorological and PM2.5 profiles at growth, maintenance, and dissipation stages, and elucidated the mechanism of regional PM2.5 transport inducing air pollution over the receptor region with the contribution of thermal and mechanical factors. The regional PM2.5 transport was concentrated in the upper ABL over the downwind receptor region with high PM2.5 concentrations at altitudes of 600-800 m, where the transported PM2.5 peaks were downwards mixed by vertical wind shear, forming the vertical PM2.5 transport from the upper ABL to near-surface in the growth stage; the weakened winds and less unstable structures in the ABL favored the sustained pollution with slight vertical PM2.5 changes in the maintenance stage, which was dominated by thermal factors with 87 % contribution; the removal of PM2.5 was triggered by increasing winds from the upper ABL, activating the dissipation of heavy PM2.5 pollution with the mechanical effect accounting for 60 % in the dissipation stage. These findings could improve our understanding of ABL's influence on air pollution over the receptor region with implications for the regional transport of air pollutants in environmental changes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Meteorologia , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China , Estações do Ano
14.
J Environ Sci (China) ; 125: 831-842, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375965

RESUMO

This study represents the first quantitative evaluation of pollution transport budget within the boundary layer of typical cities in the Beijing-Tianjin-Hebei (BTH) region from the perspective of horizontal and vertical exchanges and further discusses the impact of the atmospheric boundary layer (ABL)-free troposphere (FT) exchange on concentration of fine particulate matter (PM2.5) within the ABL during heavy pollution. From the perspective of the transport flux balance relationship, differences in pollution transport characteristics between the two cities is mainly reflected in the ABL-FT exchange effect. The FT mainly flowed into the ABL in BJ, while in SJZ, the outflow from the ABL to the FT was more intense. Combined with an analysis of vertical wind profile distribution, BJ was found to be more susceptible to the influence of northwest cold high prevailing in winter, while sinking of strong cold air allowed the FT flowing into the ABL influence the vertical exchange over BJ. In addition, we selected a typical pollution event for targeted analysis to understand mechanistic details of the influence of ABL-FT exchange on the pollution event. These results showed that ABL-FT interaction played an important role in PM2.5 concentration within the ABL during heavy pollution. Especially in the early stage of heavy pollution, FT transport contributed as much as 82.74% of PM2.5 within the ABL. These findings are significant for improving our understanding of pollution transport characteristics within the boundary layer and the effect of ABL-FT exchange on air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , China , Estações do Ano , Pequim
15.
J Environ Sci (China) ; 124: 557-569, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182163

RESUMO

Atmospheric oxidizing capacity (AOC) is the fundamental driving factors of chemistry process (e.g., the formation of ozone (O3) and secondary organic aerosols (SOA)) in the troposphere. However, accurate quantification of AOC still remains uncertainty. In this study, a comprehensive field campaign was conducted during autumn 2019 in downtown of Beijing, where O3 and PM2.5 episodes had been experienced successively. The observation-based model (OBM) is used to quantify the AOC at O3 and PM2.5 episodes. The strong intensity of AOC is found at O3 and PM2.5 episodes, and hydroxyl radical (OH) is the dominating daytime oxidant for both episodes. The photolysis of O3 is main source of OH at O3 episode; the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) plays important role in OH formation at PM2.5 episode. The radicals loss routines vary according to precursor pollutants, resulting in different types of air pollution. O3 budgets and sensitivity analysis indicates that O3 production is transition regime (both VOC and NOx-limited) at O3 episode. The heterogeneous reaction of hydroperoxy radicals (HO2) on aerosol surfaces has significant influence on OH and O3 production rates. The HO2 uptake coefficient (γHO2) is the determining factor and required accurate measurement in real atmospheric environment. Our findings could provide the important bases for coordinated control of PM2.5 and O3 pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental , Formaldeído , Radical Hidroxila/análise , Ácido Nitroso , Oxidantes , Oxirredução , Ozônio/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise
16.
iScience ; 25(12): 105688, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36578322

RESUMO

Owing to the impact of the western development of China, there have been signs of air pollution over the Qinghai-Tibet Plateau in recent years. However, monitoring data on atmospheric volatile organic compounds (VOCs) are lacking in plateau areas. Here, VOCs concentrations in urban and background areas in North China and the Qinghai-Tibet Plateau were observed from 2012 to 2014 and 2020 to 2022, respectively. Compared to 2012-2014, the concentration of VOCs increased to 2.5 times in urban areas on the Qinghai-Tibet Plateau, which was equivalent to that in North China. Oil, gas, and solvent evaporation caused by a low atmospheric pressure is the primary factor for the increase in VOCs in plateau areas, and weak VOCs degradation is the secondary factor. Hence, we put forward the VOCs control strategies in plateau areas and point out the defects in the current research.

17.
Sci Total Environ ; 838(Pt 4): 156364, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654207

RESUMO

Beijing's air quality has improved significantly since the implementation of the Air Pollution Prevention and Control Action Plan in 2013, but the local and regional contributions to this improvement have rarely been studied. Here, the vertical profile of the atmospheric backscattering coefficient (ABC) was measured by a ceilometer in Beijing from 2015 to 2020. The results show that the ABC in Beijing decreased the most at ground level from 2015 to 2020, decreasing 51.4%. Interannual variability decreased with height, and no noticeable change was found in the height range above 600 m. The most apparent declines occurred in autumn and winter, with decreases greater than 55.0%, and the minimum decrease occurred in summer, with a reduction of only 20.0%. To analyze the reasons for the autumn and winter declines, we divided the whole day into four periods according to the evolution characteristics of the atmospheric boundary layer. The significant decrease in the backscattering coefficient near the ground during the daytime confirms the effect of local emission reductions. In contrast, the considerable decreases in the backscattering coefficient measured at different heights in the midday mixing layer demonstrate the contribution of regional transport reduction. The above research results confirm the importance of regional coordinated air pollution control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Pequim , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
18.
Environ Sci Technol ; 56(13): 9312-9324, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35708253

RESUMO

Air quality in Beijing has been improved significantly in recent years; however, our knowledge of the vertically resolved aerosol chemistry in summer remains poor. Here, we carried out comprehensive measurements of aerosol composition, gaseous species, and aerosol optical properties on a meteorological tower in Beijing in summer and compared with those measured in winter. Our results showed that aerosol liquid water (ALW) contributing approximately 50% of the total mass with higher values aloft played a crucial role in aerosol formation. Particularly, the higher nitrate concentration in city aloft than at the ground level during daytime was mainly due to the enhanced gas-particle partitioning driven by ALW and particle acidity. The vertical profiles of organic aerosol (OA) factors varied more differently in the urban boundary layer. Although the ubiquitous decreases in primary OA with the increase in height were mainly due to the influences of local emissions and vertical convection, the vertical differences in oxygenated OA between summer and winter may be related to the photochemical processing of different biogenic and anthropogenic volatile organic compounds. The single-scattering albedo, brown carbon, and absorption Ångstrom exponent of aerosol particles also presented different vertical profiles between day and night due to the vertical changes in aerosol chemistry.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/química , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Gases , Material Particulado/análise , Estações do Ano
19.
Environ Sci Technol ; 56(9): 5390-5397, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35442649

RESUMO

Urban greening has often been proposed as a cost-effective solution to improve environmental comfort, but may also deteriorate air quality. Quantifying these two opposing effects of urban greening is necessary to develop successful environmental policies for specific mega-city clusters. In this study, a high-resolution regional climate and air quality model (WRF-Chem, v4.0.3) was employed to test three scenarios aimed at quantifying the impact of land-use change and biogenic emissions from urban greening on regional climate and air quality. It was found that urban greening could effectively decrease the near-surface temperature by up to 0.45 °C, but the increased biogenic volatile organic compound (BVOC) emissions offset some of this cooling effect (by up to 65%). Land-use change due to urban greening dominated the improvement in human comfort but worsened diffusion conditions to result in the convergence of fine particulate matter in specific areas. The selection of low-emission tree species may be imperative, although increased emissions from urban greening will not change the sensitivity of ozone to precursors under the current scenario of anthropogenic emissions. This is because BVOC emissions due to urban greening will become a more important source of pollution with the development of clean energy and the popularity of low-carbon lifestyles.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Política Ambiental , Poluição Ambiental , Humanos , Material Particulado
20.
Environ Sci Technol ; 56(8): 4828-4837, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35297613

RESUMO

Atmospheric nitrous acid (HONO) is a dominant precursor of hydroxyl (OH) radicals, and its formation mechanisms are still controversial. Few studies have simultaneously explored effects of different combustion processes on HONO sources. Hereby, synchronous HONO measurement in urban (BJ), suburban (XH) and rural (DBT) areas with different combustion processes is performed in the North China Plain in winter. A box model is utilized to analyze HONO formation mechanisms. HONO concentration is the highest at the DBT site (2.51 ± 1.90 ppb), followed by the XH (2.18 ± 1.95 ppb) and BJ (1.17 ± 1.20 ppb) sites. Vehicle exhaust and coal combustion significantly contribute to nocturnal HONO at urban and rural sites, respectively. During a stagnant pollution period, the NO+OH reaction and combustion emissions are more crucial to HONO in urban and rural areas; meanwhile, the heterogeneous reaction of NO2 is more significant in suburban areas. Moreover, the production rate of OH from HONO photolysis is about 2 orders of magnitude higher than that from ozone photolysis. Consequently, vehicle exhaust and coal combustion can effectively emit HONO, further causing environmental pollution and health risks. It is necessary to expand the implementation of the clean energy transition policy in China, especially in areas with substantial coal combustion.


Assuntos
Ácido Nitroso , Emissões de Veículos , China , Carvão Mineral , Radical Hidroxila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA